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Introduction

- Lattice calculation very interesting and useful

• Probe equilibrium QCD gauge field configurations with a

uniform ~B

• Calculate electric charge separation, and dependence on

external ~B, T , mq, χ SB...

- Moscow group [Phys.Rev.D80:054503,2009]

- UConn group [PoS (2009) arXiv:0911.1348]
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Charge separation (chiral magnetic effect)

The first pair of Maxwell equations (which is a consequence of the fact that
the fields are expressed through the vector potential) is not modified:

∂µF̃
µν = Jν . (21)

It is convenient to write down these equations also in terms of the electric "E
and magnetic "B fields:

"∇× "B − ∂ "E

∂t
= "J + c

(
M "B − "P × "E

)
, (22)

"∇ · "E = ρ + c "P · "B, (23)

"∇× "E +
∂ "B

∂t
= 0, (24)

"∇ · "B = 0, (25)

where (ρ, "J) are the electric charge and current densities. One can see that
the presence of Chern-Simons term leads to essential modifications of the
Maxwell theory. Let us look at a few known examples illustrating the dy-
namics contained in Eqs(22),(23),(24),(25).

4.2.1. The Witten effect

Let us consider, following Wilczek [10], a magnetic monopole in the pres-
ence of finite θ angle. In the core of the monopole θ = 0, and away from
the monopole θ acquires a finite non-zero value – therefore within a finite
domain wall we have a non-zero "P = "∇θ pointing radially outwards from
the monopole. According to (23), the domain wall thus acquires a non-zero

charge density c"∇θ · "B. An integral along "P (across the domain wall) yields∫
dl ∂θ/∂l = θ, and the integral over all directions of "P yields the total mag-

netic flux Φ. By Gauss theorem, the flux is equal to the magnetic charge of
the monopole g, and the total electric charge of the configuration is equal to

q = c θ g =
e2

2π2
θ g =

e

2π2
θ (eg) = e

θ

π
, (26)

where we have used an explicit expression (13) for the coupling constant c,
as well as the Dirac condition ge = 2π × integer.
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Assuming that the domain walls are thin compared to the distance L between
them, we find that the system possesses an electric dipole moment

de = c θ (B · S) L =
∑

f

q2
f

(
e
θ

π

) (
eB · S

2π

)
L; (29)

in what follows we will for the brevity of notations put
∑

f q2
f = 1; it is easy

to restore this factor in front of e2 when needed.

!B

!E

∼ + eθ
π · eB

2π

∼ − eθ
π · eB

2π

θ != 0

θ = 0

θ = 0

Figure 2: Charge separation effect – domain walls that separate the region of θ != 0 from
the outside vacuum with θ = 0 become charged in the presence of an external magnetic
field, with the surface charge density ∼ eθ/π · eB/2π. This induces an electric dipole
moment signaling P and CP violation.

Static electric dipole moment is a signature of P , T and CP violation (we
assume that CPT invariance holds). The spatial separation of charge will

induce the corresponding electric field #E = c θ #B. The mixing of pseudo-
vector magnetic field #B and the vector electric field #E signals violation of P ,
T and CP invariances.
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DK ’04;
DK, A. Zhitnitsky ‘06

In general ρ = q2

8π2
~∇θ · ~B

Take θ static, non-zero

only between domain-walls

(“parallel-plate capacitor”)

“Plates” are charged, with

charge density ±q2θB/2π2

E = θ
q2

4π2
B

(Kharzeev, arXiv:0906:2808;

Kharzeev and Zhitnitsky, 2006)
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Zero Modes of /D

Useful to work with low modes of the Dirac operator.

Physical picture: ~B polarizes the zero mode(s) associated with

the instanton (quark and anti-quark)

Spectral decomposition of Dirac operator

(/D +m)ψλ = (iλ+m)ψλ

(/D +m)−1 =
∑

λ

ψ
†
λψλ

iλ+m

Calculate eigenvectors of hermitian Domain Wall Fermion

operator instead, γ5(/D +m). Zero modes are the same.
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Contribution to charge density

ρ = ψ̄γ0ψ

= tr(/D +m)−1γ0 = trγ5/DHγ0

=
∑

λ

ψ
†
λγ0γ5ψλ

λ+m

ψλ is eigen-vector of hermitian Dirac operator

contribution to ρ = 0 for an exact chiral zero-mode, so in pres-

ence of ~B, zero-mode → near-zero mode
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Domain wall fermions (aside)

Kaplan (1992), reformulated for QCD by Shamir (1993)

Chiral fermions on the lattice at non-zero lattice spacing

By adding extra-fifth direction for fermions

Chiral zero modes stuck to boundary

Finite size of extra dimension Ls – explicit χ SB

Small additive quark mass, mres (draw picture)
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Classical instanton (-like solution)

Put classical, topological charge = 1, instanton on lattice

Chen, et al, PRD59 (1999)

Aµ = −i
3∑

j=1

ηjµνλj
xν

x2 + ρ2

ρ(r) = ρ0

(
1−

r

rmax

)
Θ(rmax − r)

Smoothly cutoff instanton as r → rmax < L/2.

Lattice artifacts and (anti-)periodic boundary conditions have

significant effects
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Boundary Conditions in presence of uniform ~B [Al-Hashimi, Weise (2008)]

In infinite volume for ~B = Bẑ (z dir), Ay = Bx

On torus, BC’s in x-y directions are

Ax(x+ Lx, y) = Ax(x, y), Ay(x+ Lx, y) = Ay(x, y) +BLx

Ax(x, y + Ly) = Ax(x, y), Ay(x, y + Ly) = Ay(x, y)

To respect gauge invariance, fermion fields must be gauge-transformed:

ψ(x+ Lx, y) = exp (−ieBLxy)ψ(x, y), ψ(x, y + Ly) = ψ(x, y)

which implies eBLxLy = eΦB = 2πnΦ, magnetic flux must be

quantized on torus!
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Classical instanton (-like solution)

84 lattice, ρ0 = 10, rmax = 3

“peeled” view
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Classical instanton (-like solution)

γ5|ψ0〉 = ±|ψ0〉 〈ψ0|γ5|ψ0〉 = ±1 (for zero-modes)
γ5|ψλ〉 = |ψ−λ〉 〈ψ−λ|γ5|ψλ〉 = 1 (for non-zero-modes)

Same is true for DWF (if mres � 1)

Chirality: 〈Ψi|Γ5|Ψj〉 Plot, Bz = 0
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Classical instanton (-like solution)

Magnitude of the zero mode(s), Bz = 0

Loc. around “instanton” (1) “Lattice-artifact Instanton” (3)
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Classical instanton (-like solution)

more “lattice-artifact zero-modes” (4 of them)

1+3+4 (+4 plane waves) = 12 zero modes
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Classical instanton (-like solution)

Apply magnetic field Bz in z-direction

Bz = 0 Bz = 0.0981748 (nΦ = 1)
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Classical instanton (-like solution)

Magnitude of the zero mode, Bz = 0.0981748 (nΦ = 1)

Charge separation!
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Classical instanton (-like solution)

Degeneracy of Landau levels goes like nΦ:

Bz = 0.19635 (nΦ = 2) Bz = 0.294524 (nΦ = 3)

0 2 4 6 8 10 12 14

0
2

4
6

8
10

12
14

0

0.2

0.4

0.6

0.8

1

h1
Entries  1024
Mean x   6.606
Mean y   6.606
RMS x   3.951
RMS y   3.951

h1
Entries  1024
Mean x   6.606
Mean y   6.606
RMS x   3.951
RMS y   3.951

0 2 4 6 8 10 12 14
0

2
4

6
8

10
12

14
0

0.2

0.4

0.6

0.8

1

h1
Entries  1024
Mean x   6.504
Mean y   6.504
RMS x   4.033
RMS y   4.033

h1
Entries  1024
Mean x   6.504
Mean y   6.504
RMS x   4.033
RMS y   4.033

8 Zero modes (4 plane waves) 12 Zero modes (6 plane waves)
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Classical instanton (-like solution) Put it all together.
It works...
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Charge in top (z-)half of lattice from near-zero-modes.
Dividing in x, y, or t gives zero, effect flips sign under Bz → −Bz
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QCD+QED Lattice Simulations

- Non-zero temperature QCD+QED simulations, T ∼ Tc

- Nτ = 8, 163, Nf=2+1, DWF (RBC+LLNL). Eventually 1+1+1

- Couple sea quarks to QCD and QED

- Include external magnetic field ~B in dynamical evolution

- Work in fixed topological sector(s)

• use the DSDR method (Vranas, JLQCD, RBC)
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Topological Charge History

Q from 5li method of de Forcrand, et al., APE smearing
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Top. charge and low eigen-modes

Low eigen-modes

correlated with

instantons

APE smeared,

“5LI” definition

of Q. Q = 9 − 10

(5li) for con-

fig. 420, or 10

from zero-modes

(index)

2 “zero-modes”,

1 “near-zero

mode” shown
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2+1 flavor QCD

Bz = 0 (10 zero modes) Bz = 1.22718 (9 zero modes)
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Charge density (from zero modes)

Charge separation, but localized around instanton?
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Charge density (from zero modes)

Bz = 0.490874,

0.736311

Bz = 0.981748,

1.22178

|ρmax| = 0.002,

0.167, 1.627,

1.825
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Charge separation (from zero modes)
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Chiral symmetry of DWF: Ls = 64 Ls = 128

Charge separation for large Bz, vary nΦ = 10 to 50
Depends on Ls (lattice artifact χ SB – expensive)
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Charge separation (from zero modes)

How large is large?

a2eBz = 2π/(LxLy)nΦ

T ≈ Tc, so a−1 ≈ 1.4− 1.5 GeV (∼0.14 fm)

Bz ≈ 1.5− 2 GeV2

if rinst ≈ (1− 2)a, (L/rinst)
2 = 16− 32

quenched studies: 〈rinst〉 ≈ 0.3 fm
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Summary

• 2+1 (1+1+1) QCD+QED simulations to investigate chiral magnetic
effect

• Initial results for classical instanton (-like) and QCD(+QED) configura-
tions show that it really works!

• Investigate paired (near-zero) modes too

• Need T , ~B, mq scans

• “Unfreeze” topology (Q) of gauge field (begun)

• Exploit dynamical QED+QCD configurations

• Important for understanding the recent results from RHIC

Calculations done on NY blue and QCDOC supercomputers at Brookhaven
National Lab.

Thanks to Dima Kharzeev for useful discussions and Massimo Di Pierro for
help with 3d plots
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